Semiconductor detectors: from particle tracking to vision for the blind

M Rahman

Department of Physics & Astronomy, University of Glasgow

Glasgow detector group:

C Adams, A Al-Ajili, M Anderson, R Bates, A Blue, W Cunningham, D Davidson, F Doherty, D Gunning, L Haddad, M Horn, A Gouldwell, P Jordan, J Marchal, K Mathieson, J Melone, F Quarati, T Quinn, P Roy, V O'Shea, KM Smith, V Wright

Outline

Overview of Glasgow detector group activities
Particle tracking with 3D detectors
Silicon carbide as a radiation hard medium
CERN Medipix for X-ray imaging
Retinal prosthetic devices for repairing blindness

Glasgow detector group activities

Group structure:

- 5 Research Associates
- 7 PhD / MSc students
- 4 Technical support
- 2 Senior engineer / physicist
- 2 Academic

Skills within group:

Detector / semiconductor characterisation

Electronic circuit design and layout

Photo- & e-beam lithography

Device modelling / simulation

Project summary:

ATLAS, LHCb - PPARC Rolling Grant

3D detector - PPARC Opportunity, Framework V

Graded gap - PPARC ROPA

Widegap SiC, GaN - PPARC Detector R&D

Retinal - EPSRC Life Sciences

Beam profiler - Scottish Enterprise

MEDIPIX - Framework V

LAD, ERD - Case with RAL

Lab-on-chip - with EE Bioelectronics

Radiation hard particle tracking I: 3D detectors

Tracking / vertexing detectors

Example of ATLAS at CERN Large Hadron Collider

Radiation hard particle tracking

CERN RD50 collaboration – super-radiation hard detectors

Development of super-radiation hard detectors:

→ Materials systems, eg oxygenated Si, SiC etc

Planned upgrade to LCH, luminosity 10³⁴ /cm²s to 10³⁵ /cm²s, requires radiation hardness of trackers to fluences ~10¹⁶ n/cm²

3D detectors

Electrodes perpendicular to wafer surface, bias field in wafer plane

Operation of 3D detector

Charge generation and collection directions decoupled

BUT increased complexity of fabrication

3D detector

Hexagonal geometry gives radial field profile

- 3-dimensional simulations using ISE
- Examine charge generation / collection (charge sharing) MIPs, X-rays, alphas

3D detector – charge collection

Medici (2D) simulations of charge collection and response times

3D detector – radiation tolerance

Simulated CCE for uniform defect distribution (10¹⁴ cm⁻³) but varying carrier recombination times from 1 µs down to 1 ps

3D detector better than conventional for lifetimes 10-8 to 10-11 sec

3D detector manufacture

Methods of 3D detector manufacture under investigation

Femtosecond laser ablation of 3D pores

TOPS facility, Strathclyde University (Glasgow)

- Ti:Sapphire laser
- 3 mJ pulses with duration of 40 fs at 1 kHz repetition rate → 5 sec per hole
- 810 nm wavelength or 405 nm wavelength (frequency doubled)
- ~25:1 aspect ratio, material independent

effects

Si optimised

Photo-electrochemical (PEC) etching of 3D pores

Most promising of three methods \rightarrow highest potential aspect ratios

Manufacture of 3D detectors

Cross-section SEMs of 3D pores made by the three methods

3D hexagonal geometry connected in strip and pixel configurations

Irradiated 3D detectors

Irradiation 10^{12} , 10^{13} , $10^{14} \,\pi/\text{cm}^2$ at 300 MeV/c pion beam PSI Villigen

Irradiated 3D detectors

Irradiation up to $10^{14} \, \pi/\text{cm}^2$ with 300 MeV/c pion beam

5.48 MeV a pulse height spectra before (←) and after (→) 10¹⁴ p/cm² irradiation

CCE: before ~ 60% after ~ 45%

3D detector for LHCb / Velo

3D to improve impact parameter resolution and lifetime

Radiation hard particle tracking II: Silicon carbide detectors

Ideal detector medium

- •High purity to enhance CCE Ge is purest material, owing to low melting point 960°C, background level ~10° cm⁻³
- •Large bandgap to suppressed thermal carriers [$\sim T^{3/2} \exp(-E_g/2kT)$] & defect recombination/generation current [$\sim np n_i^2$] SiC is $\sim 3.3 \text{eV}$, D is $\sim 5.5 \text{ eV}$
- •High μ_n , $\mu_h v_{sat}$ give lower τ_{coll} GaAs good, SiC & D have higher v_{sat}
- •Low Z number to lessen radiation losses SiC & D both better than Si, GaAs
- •Low e-h excitation energy to enhance signal D bad (15 eV), SiC (9.0 eV) like Si (3.6 eV)
- •Low *e* to reduce capacitance D (5.7) & SiC (9.7) better than Si (11.9)
- •High bond strength to reduce defect production SiC and D both good
- •High thermal conductivity to dissipate power SiC & D are excellent

SiC detectors

Fabricated on bulk semi-insulating 4H-SiC from Cree

Pad and guard ring

Si₃N₄ passivation

Bulk S.I. SiC 100 µm thick

Back face contact

- Schottky barrier diode on 4H semi-insulating SiC
- Pad and guard ring 100nm Ti
- Back contact 100nm Ni
- 200 nm Si₃N₄ for surface passivation

Effect of defects in Cree 4H-SiC

Simulations suggest degradation only at fluences >10¹⁶/cm²

Pre-irradiation spectra

100µm thick bulk SiC 0.5mm diameter diode

- Spectra taken for
 5.48 MeV Am²⁴¹ a particles
- SRIM: 5.48 MeV a range in SiC is ~18mm
- Max CCE 60% at
- -600V

Large low energy tail

4H-SiC detectors after irradiation

Italian groups have seen 100% CCE in epi-SiC ~20mm thick

X-ray imaging technologies

Film, CCD/TFT, hybrid pixel

Applications: dentistry, mammography, cardiography, etc

Film: simple, established

Digital:

•less film processing, archiving, labour

•increased speed, patient throughput

•image processing, advanced applications

•reduced dose to patients

ons X-ray source

Subject

Sensor/ detector

Digital technologies

CCD: light guides to chips

TFT: flat panel

hybrid: tiled panel

Film Emulsion, phosphor

CCD/TFT CsI, GdOS, CZT - light conversion

hybrid pixel Si,GaAs,CZT - charge conversion

Digital CCD / TFT technology

Dental CCD, TFT flat panel

CCD: High resolution ~10µm (>10 lp/mm), needs converter (GdO), fogging due to dark currents, blooming due to well capacity, large areas need light guides, additional parts increase noise

TFT: Large area cheaply, medium resolution ~100μm (~5 lp/mm), needs converter (CsI)

~1/5 dose of film, depending on noise/contrast

mammogram

cardiogram

TFT flat panel

CCD / light guide

Technology enhancement

- •CCD/TFT technology relatively straightforward to implement pixels are relatively simple; permit high resolution or large area integration of image
- •Improvements in device miniaturisation and multi-chip module technology now mean that pixels may be made small and also 'smart'
- •So design chip that will count photons of a particular energy
 - Will be linear over the dynamic range of the counter
 - Ability to count small numbers of photons means potentially reducing dose down to smallest limit possible
 - Detecting photon energy (harder with CCD / TFT) will offer potential improvements to image quality, so better diagnosis

Charge integration vs photon counting

Pixel functionality for dose reduction

CCD system: charge integration, affected by leakage currents

Photon counting: count individual incoming photon, no leakage effects

Hybrid pixel technology

Development of photon counting from particle physics applications

Increased pixel functionality (CERN Microelectronics):

	Year	Array size	Cell size (mm´mm)	Trans/cell
LAA	1988	9×12	200×200	40
OmegaD	1991	16×63	75×500	81
Omega2	1993	16×63	75×500	81
Omega3/LHC1	<mark>1 1995</mark>	16×27	50×500	395
Medipix1	1997	64×64	170×170	400
Medipix2	2002	256×256	55×55	502

Medipix1 on chipboard

Medipix1

Developed at CERN Microelectronics

Properties:

- •1 µm gate length SACMOS
- •170×170 μ m² pixels
- •64×64 pixel array
- •sensitive to positive charge only
- •column-wise leakage compensation 10nA max
- •single discriminator (energy threshold) with 3-bit tune
- •15 bit counter
- •readout time 384 µs

Dose reduction with Medipix1

Compare against CCD / dental gun (~30 keV X-ray photons)

•Sens-A-Ray dental CCD from Regam Medical (Sweden)

•Contrast and noise performance of Medipix1 is much better, with dose reductions of >30 possible

Comparing CCD with Medipix1

Sens-A-Ray (Regam Medical)

Spatial resolution of Medipix1

Pixel size is not always image resolution

- •Image resolution affected by contrast, noise and detector geometry
- •MTF = Fourier transform of Line Spread Function (measured by exposing a slit)
- •Charge sharing influences counts at small pixel size

Energy filtering in Medipix1

Comparator threshold allows filtering of image in energy

•Not easy in CCD/TFT technology

•Incident photon energy gives N e-h pairs (typically few 1000s e⁻)

•Comparator permits counting only if *N* exceeds threshold (>2000 e⁻, noise ~250 e⁻)

•Allows eg Compton background to be suppressed, improving image

Mo source (17.4 keV)

Medipix2

First batch of chips under test

Properties:

- •To permit ~10 lp/mm, $55 \times 55 \mu m^2$ pixels
- •To allow sufficient functionality within pixel, 0.25 µm gate length CMOS
- •Area coverage 256×256 array, ~1.4×1.4 cm² active area
- •To permit Si, GaAs, CZT etc, electron and hole collection
- •To equalise spatial inhomogeneities in leakage, pixel-wise compensation between +10 nA and -4 nA
- •To permit energy windowing, twin adjustable thresholds
- •Smaller photon flux per pixel than Medipix1, so 13-bit counter with overflow
- •To allow large area coverage, 3-side buttable

First 'real' images →

Smart pixel detectors for artificial vision to repair blindness

Retinal degeneration and blindness

• Leading causes of blindness in West (~8% of population):

Age related macular degeneration (affects rods – central vision)

Retinitis pigmentosa (affects cones – peripheral vision)

• Ganglion cells (connect to optic nerve) stay intact initially

healthy

degenerated

Artificial vision

- For stimulation of retinal ganglions:
 - Make retinal implant to replace lost rods and cones either photodiode arrays (Tubingen) or 'smart' arrays hooked to computer (Baltimore)
 - Make implant to sit on ganglion surface, excited by laser (MIT, Bonn)
- For damaged nerve fibres:
 - Connect video directly to visual receptors in brain via a pin-grid array cortical implant (Utah)

Artificial retina chips
Clinical trials by Optobionics Corporation (USA)

Fabricated chip, selfpowered using solar cells

Implanted chip

Artificial retina chips
Patient trials at Johns Hopkins Hospital, Baltimore (USA)

Chip 'hardwired' to outside world

Artificial neural networks

Emulating biological neural networks by connectionism

Part of biological neural network

- bPhysicist's neuron: McCulloch & Pitts (1943)
- 3-layer/weighted sum: Rumelhart & McClelland (1986)

Retinal readout board

Designed at UC Santa Cruz (A Litke)

CCD camera

64 electrode system

61 electrode array

Fabricated using photolithography and dry-etch

519 electrode arrayFabricated using multi-layer masking and e-beam

Salk movie using 512 readout system

Prototype retinal implants

- Initially an 8-electrode array fabricated on a biocompatible substrate
- Polyimide substrate (Kapton)
- Gold wire connections-
 - Fabricated down to 10μm wires
 - Should be possible to go smaller
- Platinum electrodes
 - 25 μm diameter
 - Biological signals detected
 - Electrode characteristics well behaved
- CAD designs for test implant

Neural net retina chip

Designed as three-layer feedforward neural network

• Design retina chip with programmable weights (10x10 monolithic active pixel sensor – RAL)

• Train from retinal readout measurements (in-

Retinal implant electrodes – initial tests

- Platinisation required to reduce electrode impedance
- Initial implant tests with cultured neural & heart cells → measured signals
- Next step incorporate retina chip (RAL designers) + power

Time (ms)

Summary

- 3D detectors show much promise only few groups world-wide making them.
- SiC shows initial promise as radiation hard material growing interest.
- Photon counting technology used in particle tracking, now being exploited for X-ray imaging
- Imaging and DAQ techniques from high energy physics being used to design a neural network retina chip / implant for repairing certain types of blindness

Acknowledgements

Including (not exhaustive list):

3D/SiC – M Moll, C Joram, M Glaser (CERN), K Gabathuler (PSI); C Parkes (Glasgow), D Jones, D Jaroszinski (Strathclyde); S Parker (Berkeley), C da Via (Brunel); V Kazukauskas, J Vaitkus (Vilnius); HE Nielson (Mid-Sweden), B Svensenn (Oslo), I Pintellie (Hamburg), B Jones (Exeter), M Bruzzi (Florence); L Lea (Surface Technology Systems); J Linross, X Llalport (KTH)

Medipix – M Campbell, L Tlustos, B Mikulec (CERN); Medipix collaboration (CERN, Naples, Pisa, Calgiari, Frieburg, Mid-Sweden, NIKHEF, Prague, MRC Cambridge, CEA Saclay, ESRF Grenoble, Panalytical, Glasgow)

Retinal – CDWilkinson, AJ Curtis, A Beattie (EE/IBLS – Cell Engineering), J Morrison (IBLS – retinal surgery); A Litke, EJ Chichilnisky, W Dabrowski (retinal readout); M French, M Prydderch, R Turchetta, J Crooks (RAL – neural net retina chip design); JIB Wilson, M Lal (HW/NPL – solar cells); M Cooke (Oxford Plasma Technology)